Submitted, In Press, and Preprints

None right now.


Published

  1. Maric I, Lopez-Ferreras L, Bhat Y, Asker M, Borchers S, Bellfy L, Byun S, Kwapis JL, Skibicka KP. (2023). From the Stomach to Locus Coeruleus: New Neural Substrate for Ghrelin's Effects on Ingestive, Motivated and Anxiety-like Behaviors. Frontiers in Pharmacology. 14-2023. DOI: 10.3389/fphar.2023.1286805

  2. Boyd HM, Frick KM, Kwapis JL. (2023). Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. Journal of Biological Rhythms. Jul 19;7487304231184761 DOI: 10.1177/07487304231184761

  3. Bellfy L, Smies CW, Bernhardt AR, Bodinayake KK, Sebastian A, Stuart EM, Wright DS, Lo CY, Murakami S, Boyd HM, von Abo MJ, Albert I, Kwapis JL. The clock gene Per1 may exert diurnal control over hippocampal memory consolidation. Neuropsychopharmacology. 2023 Nov;48(12):1789-1797. DOI: 10.1038/s41386-023-01616-1
    **Originally a preprint: bioRxiv: 511798

  4. Brunswick CA, Baldwin DJ, Bodinayake KK, McKenna AR, Lo C, Bellfy L, Urban MW, Stuart EM, Murakami S, Smies CW, Kwapis JL. (2023). The clock gene Per1 is necessary in the anterior retrosplenial cortex—but not in the suprachiasmatic nucleus—for incidental learning in young and aging male mice. Neurobiology of Aging. 126: 77-90. DOI: 10.1016/j.neurobiolaging.2023.02.009

  5. Ferrara NC, Kwapis JL, Trask S. (2023). Memory retrieval, reconsolidation, and extinction: Exploring the boundary conditions of post-conditioning cue exposure. Frontiers in Synaptic Neuroscience. 15:1146665. DOI: 10.3389/fnsyn.2023.1146665

  6. Smies CW, Bodinayake KK, Kwapis JL. (2022). Time to learn: the role of the molecular circadian clock in learning and memory. Neurobiol Learn Mem. Jun 10:107651. DOI: 10.1016/j.nlm.2022.107651

  7. Urban MW, Lo C, Bodinayake KK, Brunswick CA, Murakami S, Heimann AC, Kwapis JL. (2021). The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner. Neurobiol Learn Mem. Oct 5:107535. DOI: 10.1016/j.nlm.2021.107535

  8. Trask S, Ferrara NC, Jasnow AM, Kwapis JL. (2021). Contributions of the rodent cingulate-retrosplenial cortical axis to associative learning and memory: A proposed circuit for persistent memory maintenance. Neuroscience & Biobehavioral Reviews, 130: 178-184. DOI: 10.1016/j.neubiorev.2021.08.023

  9. Bellfy L, Kwapis JL. (2020). Molecular mechanisms of reconsolidation-dependent memory updating. International Journal of Molecular Sciences, 21(18): 6580. DOI: 10.3390/ijms21186580

  10. Wright DS, Bodinayake KK, Kwapis JL. (2020). Investigating memory updating across the lifespan using the Objects in Updated Locations (OUL) task. Current Protocols in Neuroscience, 91: e87. DOI: 10.1002/cpns.87

  11. Navabpour SV, Kwapis JL, Jarome TJ. (2020). A neuroscientist’s guide to transgenic mice and other genetic tools. Neuroscience and Biobehavioral Reviews, 108: 732-748. DOI: 10.1016/j.neubiorev.2019.12.013

  12. Kwapis JL, Alaghband Y, Keiser AA, Dong TN, Michael CM, Rhee D, Shu G, Dang RT, Matheos DP, Wood MA. (2020). Aging mice show impaired memory in the novel OUL updating paradigm. Neuropsychopharmacology, 45: 337-346. DOI: 10.1038/s41386-019-0438-0

  13. Butler CW, Keiser AA, Kwapis JL, Berchtold NC, Wall VL, Wood MA, Cotman CW. (2019). Exercise opens a temporal window for enhanced cognitive improvement from subsequent physical activity. Learning and Memory, 26: 485-492. DOI: 10.1101/lm.050278.119

  14. Kwapis JL, Alaghband Y, Lopez AJ, Long JM, Li X, Shu G, Bodinayake KK, Matheos DP, Rapp PR, Wood MA. (2019). HDAC3-mediated repression of the Nr4a family contributes to age-related impairments in long-term memory. Journal of Neuroscience, 39: 4999-5009. DOI: 10.1523/JNEUROSCI.2799-18.2019

  15. Hevera A, Zhou L, Pasmisan I, McLachlan E, Kong G, Hutson TH, Danzi M, Lemmon VP, Vixby J, Matamoros-Angles A, Forsberg K, De Virgiliis F, Matheos DP, Kwapis JL, Wood MA, Puttagunta R, del Rio JA, Di Giovanni S. (2019). PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. The EMBO Journal, 38: e101032. DOI: 10.15252/embj.2018101032

  16. López AJ, Hemstedt TJ, Jia Y, Hwang PH, Campbell RR, Kwapis JL, White AO, Chitnis O, Scarfone VM, Matheos DP, Lynch G, Wood MA. (2019). Epigenetic regulation of immediate-early gene Nr4a2/Nurr1 in the medial habenula during reinstatement of cocaine-associated behavior. Neuropharmacology, 153: 13-19. DOI: 10.1016/j.neuropharm.2019.04.016

  17. Ferrara NC, Jarome TJ, Cullen PK, Orsi SA, Kwapis JL, Trask S, Pullins SE, Helmstetter FJ. (2019). GluR2 endocytosis-dependent protein degradation in the amygdala mediates memory updating. Science Reports, 9: 5180. DOI: 10.1038/s41598-019-41526-1

  18. Kwapis JL, Alaghband Y, Kramár EA, Vogel Ciernia A, López AJ, White AO, Shu G, Rhee D, Michael CM, Montellier E., Liu Y, Magnan CN, Sassone-Corsi P, Baldi P, Matheos DP, Wood MA. (2018) Epigenetic regulation of the circadian gene Per1 in the hippocampus contributes to age-related changes in hippocampal memory. Nature Communications, 9, 3323. DOI: 10.1038/s41467-018-05868-0
    **Originally a preprint: bioRxiv: 301135

  19. Alaghband Y, Kramár E, Kwapis JL, Kim ES, Hemstedt TJ, López AJ, White AO, Al-Kachak A, Aimiuwu OV, Bodinayake KK, Oparaugo NC, Han J, Lattal KM, Wood MA. (2018). CREST in the nucleus accumbens core regulates cocaine conditioned place preference, cocaine-seeking behavior, and synaptic plasticity. The Journal of Neuroscience, 38, 9514-9526. DOI: 10.1523/JNEUROSCI.2911-17.2018

  20. López AJ, Jia Y, White AO, Kwapis JL, Espinoza M, Hwang P, Campbell R, Alaghband, Matheos DP, Lynch G, Wood MA. Medial habenula cholinergic signaling regulates cocaine-associated relapse-like behavior. Addiction Biology, May;24(3):403-413. DOI: 10.1111/adb.12605

  21. Shu G, Kramár EA, López AJ, Huynh G, Wood MA, Kwapis JL. (2018). Deleting HDAC3 rescues long-term memory impairments induced by disruption of the neuron-specific chromatin remodeling complex subunit BAF53b. Learning and Memory, 25: 109-114. DOI: 10.1101/lm.046920.117

  22. Kwapis JL, Alaghband Y, López AJ, White AO, Campbell RR, Dang RT, Rhee D, Tran AV, Carl AE, Matheos DP, Wood MA. (2017). Context and auditory fear are differentially regulated by HDAC3 activity in the lateral and basolateral subnuclei of the amygdala. Neuropsychopharmacology, 42: 1284-1294. PMID: 27924874. DOI: 10.1038/npp.2016.274

  23. Alaghband Y, Kwapis JL, López AJ, White AO, Osasumwen VA, Al-Kachak A, Bodinayake KK, Oparugo NC, Dang R, Astarabadi M, Matheos DP, Wood MA. (2017). Distinct roles for the deacetylase domain of HDAC3 in the hippocampus and medial prefrontal cortex in the formation and extinction of memory. Neurobiology Learn Memory,145:94-104. doi: 10.1016/j.nlm.2017.09.001

  24. White AO, Kramár EA, López AJ, Kwapis JL, Doan J, Saldana D, Davatolhagh MF, Alaghband Y, Blurton-Jones M, Matheos DP, Wood MA. (2016). BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nature Communications, 7: 11725. DOI: 10.1038/ncomms11725

  25. López AJ, Kramár EA, Matheos DP, Kwapis JL, White AO, Vogel-Ciernia A, Wood MA. (2016). Promoter-specific effects of DREADD modulation on synaptic plasticity and hippocampal learning. Journal of Neuroscience, 36: 3588-3599. DOI: 10.1523/JNEUROSCI.3682-15.2016

  26. Kwapis JL, Jarome TJ, Ferrara NC, Helmstetter FJ. (2017). Updating procedures can reorganize the neural circuit supporting a fear memory. Neuropsychopharmacology, 42: 1688-1697. DOI: 10.1038/npp.2017.23

  27. Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ. (2016). CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. (2016). Neurobiology of Learning and Memory, 128: 103-109. DOI: 10.1016/j.nlm.2016.01.001

  28. Kwapis JL, Jarome TJ, Lee JL, Helmstetter FJ. (2015). The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiology of Learning and Memory, 123: 110-116. DOI: 10.1016/j.nlm.2015.06.007

  29. Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ. (2015). Contextual information drives the reconsolidation-dependent updating of retrieved fear memories. Neuropsychopharmacology, 40: 3044-3052. DOI: 10.1038/npp.2015.161

  30. Kwapis JL, Wood MA. (2014). Epigenetic mechanisms in fear conditioning: Implications for treating post-traumatic stress disorder. Trends in Neurosciences, 37: 706-720. DOI: 10.1016/j.tins.2014.08.005

  31. Kwapis JL, Jarome TJ, Helmstetter FJ. (2014). The role of the medial prefrontal cortex in trace fear extinction. Learning and Memory, 22: 39-46. DOI: 10.1101/lm.036517.114

  32. Jarome TJ, Kwapis JL, Hallengren JJ, Wilson SM, Helmstetter FJ. (2013). The ubiquitin-specific protease 14 (USP14) is a critical regulator of long-term memory formation. Learning and Memory, 21: 9-13. PMID: 24344179.

  33. Kwapis JL, Helmstetter FJ. (2014). Does PKM(zeta) maintain memory? Brain Research Bulletin, 105: 36-45. PMID: 24076105.

  34. Kwapis JL, Jarome TJ, Lee JL, Gilmartin MR, Helmstetter FJ. (2014). Extinguishing trace fear engages the retrosplenial cortex rather than the amygdala. Neurobiology of Learning and Memory, 113: 41-54. PMID: 24055593.

  35. Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ. (2013). CaMKII, but not protein kinase A, regulates Rpt5 phosphorylation and proteasome activity during the formation of long-term memories. Frontiers in Behavioral Neuroscience, 7: 115. PMID: 24009566.

  36. Gilmartin MR, Kwapis JL, Helmstetter FJ. (2013). NR2A- and NR2B-containing NMDA receptors in the prelimbic medial prefrontal cortex differentially mediate trace, delay, and contextual fear conditioning. Learning and Memory, 15: 290-294. PMID: 23676200.

  37. Jarome TJ, Kwapis JL, Werner CT, Parsons RG, Gafford GM, Helmstetter FJ. (2012). The timing of multiple retrieval events can alter GluR1 phosphorylation and the requirement for protein synthesis in fear memory reconsolidation. Learning and Memory, 19: 300-306. PMID: 22723052.

  38. Kwapis JL, Jarome TJ, Gilmartin MR, Helmstetter FJ. (2012). Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear memory. Neurobiology of Learning and Memory, 98: 148-153. PMID: 22659643.

  39. Gilmartin MR, Kwapis JL, Helmstetter FJ. (2012). Trace and contextual fear conditioning are impaired following unilateral microinjection of muscimol in the ventral hippocampus or amygdala, but not the prefrontal cortex. Neurobiology of Learning and Memory, 97: 452-464. PMID: 22469748.

  40. Kwapis JL, Jarome TJ, Schiff JC, Helmstetter FJ. (2011). Memory consolidation in both trace and delay fear conditioning is disrupted by intra-amygdala infusion of the protein synthesis inhibitor anisomycin. Learning and Memory, 18: 728-732. PMID: 22028394.

  41. Jarome TJ, Werner CT, Kwapis JL, Helmstetter FJ. (2011). Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS One, 6: e24349. PMID: 21961035.

  42. Jarome TJ, Kwapis JL, Nye SH, Helmstetter FJ. (2010). Introgression of Brown Norway chromosome 1 onto the fawn hooded hypertensive background rescues long-term fear memory deficits. Behavior Genetics, 40: 85-92. PMID: 21961035.

  43. Kwapis JL, Jarome TJ, Lonergan ME, Helmstetter FJ. (2009). Protein kinase Mzeta maintains fear memory in the amygdala but not in the hippocampus. Behavioral Neuroscience, 123: 844-850. PMID: 19634944.