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Although neuroendocrinologists have long consid-
ered sex hormones to be crucial regulators of both neu-
ronal function and animal behavior, many scientists 

outside of the field have been wary of considering sex 
hormones in their studies. Historically, females have 
been understudied, in part due to the perception that 
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Abstract Both the circadian clock and sex hormone signaling can strongly 
influence brain function, yet little is known about how these 2 powerful modu-
latory systems might interact during complex neural processes like memory 
consolidation. Individually, the molecular components and action of each of 
these systems have been fairly well-characterized, but there is a fundamental 
lack of information about how these systems cooperate. In the circadian system, 
clock genes function as timekeeping molecules that convey time-of-day infor-
mation on a well-stereotyped cycle that is governed by the suprachiasmatic 
nucleus. Keeping time is particularly important to synchronize various physio-
logical processes across the brain and body, including those that regulate mem-
ory consolidation. Similarly, sex hormones are powerful modulators of memory, 
with androgens, estrogens, and progestins, all influencing memory consolida-
tion within memory-relevant brain regions like the hippocampus. Despite clear 
evidence that each system can influence memory individually, exactly how the 
circadian and hormonal systems might interact to impact memory consolidation 
remains unclear. Research investigating either sex hormone action or circadian 
gene function within memory-relevant brain regions has unveiled several 
notable places in which the two systems could interact to control memory. Here, 
we bring attention to known interactions between the circadian clock and sex 
hormone signaling. We then review sex hormone–mediated control of memory 
consolidation, highlighting potential nodes through which the circadian system 
might interact during memory formation. We suggest that the bidirectional rela-
tionship between these two systems is essential for proper control of memory 
formation based on an animal’s hormonal and circadian state.
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fluctuations in hormone levels across the estrous cycle 
introduce an uncontrollable cofounding variable that 
increases variability among females (for review see 
Beery and Zucker, 2011; Shansky, 2019). However, 
recent meta-analyses have shown that variability 
within females is no greater than that within males, 
including in studies of learning and memory (Kaluve 
et  al., 2022; Prendergast et  al., 2014). Though the 
estrous cycle can add additional considerations when 
using intact females, there are clear sex differences in 
many disorders such as Alzheimer’s disease (for 
review see Ferretti et al., 2018; Toro et al., 2019), sleep 
disorders (for review see Hajali et al., 2019; Mallampalli 
and Carter, 2014), and learning disabilities (for review 
see Ferri et  al., 2018; Krafnick and Evans, 2018). 
Similarly, older women are at an increased risk of cog-
nitive decline and dementia largely due to changes in 
hormone levels caused by menopause (for review see 
Conde et al., 2021; Scheyer et al., 2018). These clear dif-
ferences make sex-specific investigations both biologi-
cally and clinically relevant.

One major contributor to these sex differences is 
steroid sex hormones, which serve as potent modula-
tors of many brain functions in both sexes, including 
memory formation across a variety of species (Gervais 
et al., 2019; Gresack and Frick, 2006; Hodgson et al., 
2008; Koss and Frick, 2019; Orr et al., 2009; Packard 
et  al., 1996). Although various factors contribute to 
sex differences (e.g., different gene products from X 
and Y chromosomes, developmental factors, epigen-
etic factors), sex hormones play a key role in estab-
lishing and maintaining sex differences. A more 
complete understanding of differences in cellular and 
molecular processes underlying hormonal regulation 
of learning and memory is therefore necessary to 
develop sex- and age-specific treatments for many 
sex-biased disorders.

Sex hormone production has been extremely well-
characterized (for review see Frick et  al., 2015; 
Kriegsfeld and Silver, 2006), although it is less clear 
how sex hormones interface with other regulatory sys-
tems. One important regulator for stimulating hor-
mone production is the suprachiasmatic nucleus (SCN) 
in the hypothalamus. The SCN is the brain’s central 
circadian pacemaker, which establishes circadian 
rhythms in many vertebrate species. The SCN encodes 
both time-of-day and seasonal information, which it 
then communicates to other nuclei in the hypothala-
mus to stimulate hormone production and release. 
While the circadian clock has been well-studied for its 
role in regulating sex hormone production during 
development and in reproductive behaviors, much less 
is known about how the circadian clock itself might be 
influenced by sex hormones, especially in areas of the 
brain outside of those responsible for hormone produc-
tion. Although there are studies considering how sex 

hormone action could alter timekeeping within the 
central circadian pacemaker, little is known about how 
this action could modify the SCN’s downstream affer-
ent projections. Likewise, it is unclear how sex hor-
mones could affect local clock gene expression within 
almost any brain region outside of those important for 
regulating hormone production itself. The hippocam-
pus, a key brain region for spatial memory formation, 
is one such area with potential for a bidirectional rela-
tionship between clock genes and sex hormone func-
tion, as it is well-documented to be sensitive to both sex 
hormones and circadian oscillations (for review see 
Frick et  al., 2015; Smies et  al., 2022). Furthermore, 
within the retrosplenial cortex, another memory-rele-
vant brain area, clock genes, such as Period1 (Per1), 
have been shown to modulate memory formation in a 
sex-specific manner, suggesting an interaction between 
the circadian system, sex hormones, and memory con-
solidation (Urban et al., 2021).

Here, we argue that clock genes and sex hormones 
synergistically function to regulate memory consoli-
dation. First, we introduce the four core clock gene 
families that “keep time” across almost all cell types, 
including those in memory-relevant brain regions. 
Next, we discuss known examples in which clock 
gene expression is altered in response to experimen-
tal sex hormone manipulations. We then review what 
is known about sex hormone action in memory-rele-
vant brain regions, specifically emphasizing nodes 
where clock gene regulation and sex hormone signal-
ing might overlap to modulate memory. Finally, we 
discuss how clock genes and sex hormones may 
cooperate via a bidirectional signaling relationship to 
influence memory formation, potentially in a sex-
specific or time-of-day-specific manner.

ClOCk GENES ANd ThE CIRCAdIAN  
CyClE

The circadian system plays an essential role in syn-
chronizing an animal’s internal systems with the 
external time of day. Almost all cells across the body 
show timekeeping and have at least some rhythmic 
expression of clock genes. This time-of-day informa-
tion provided by the circadian system is used to syn-
chronize a variety of physiological functions across 
the day/night cycle, including sleep (for review 
Fisher et al., 2013), feeding (for review see Fulgham 
et al., 2021), and even memory formation (for review 
see Smies et  al., 2022). Despite the distinct features 
and functions of the tissues that depend upon circa-
dian oscillations, they all require the same basic 
molecular feedback loop to maintain information 
about time of day. The molecular clock comprises a 
series of proteins that are expressed cyclically across 
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the 24-h day. There are 4 central components of the 
molecular clock: Period (Per), Cryptochrome (Cry), 
Circadian Locomotor Output Cycles Kaput (Clock), 
and Brain and Muscle ARNT-Like 1 (Bmal1) (Figure 
1). The interactions of Per, Cry, Clock, and Bmal1 form 
a negative transcription-translation feedback loop 
(TTFL), which occurs over a roughly 24-h cycle (for 
review see Yi et al., 2022). The TTFL is initiated by the 
dimerization of CLOCK and BMAL1 to E-box motifs 
upstream of the Per and Cry gene families. The 
CLOCK-BMAL1 heterodimer drives transcription of 
Per and Cry, which are then translated in the cyto-
plasm, where they form a PER-CRY heterodimer. 
Phosphorylation of PER induces trafficking of the 
PER-CRY complex to the nucleus where it recruits 
transcriptional repressors to block CLOCK and 
BMAL1 activity (Aryal et al., 2017; Duong et al., 2011), 
effectively inhibiting the transcription of the Per and 
Cry genes. The PER-CRY complex degrades over time 
to relieve the inhibition of the CLOCK-BMAL1 het-
erodimer, ultimately initiating a new round of Per 
and Cry transcription to begin a new cycle.

While much research has been done to study the 
role of circadian oscillators within the SCN, less is 
known about how clock genes function in other brain 
areas and tissue types. For example, it is less clear how 
these clock genes function in memory-relevant brain 
regions like the hippocampus. Although it is well-doc-
umented that the circadian system can strongly influ-
ence memory formation across species (Chaudhury 

and Colwell, 2002; Jilg et al., 2010; Lyons et al., 2006; 
Lyons and Roman, 2009; Rawashdeh et  al., 2016; 
Valentinuzzi et al., 2008), it is still unclear exactly how 
the clock exerts diurnal control over memory. It is 
likely that core clock genes function outside their role 
as circadian regulators in the SCN, performing tissue-
specific functions within downstream satellite clocks 
in addition to their role as timekeepers. These tissue-
specific functions would likely be enabled by interac-
tions among clock genes and local modulators such as 
proteins, genes, and even hormones that act locally to 
control site-specific actions based on the time of day.

Core Circadian Clock Genes and Their Roles in 
Memory

Each of the four core clock gene families have 
been broadly implicated in memory. For the pur-
pose of this review, we will briefly introduce some 
of the most prominent examples, but we encourage 
interested readers to see relevant reviews for a more 
comprehensive coverage (for review see Hartsock 
and Spencer, 2020; Smies et  al., 2022). Mice with 
global deletions of Clock, Bmal1, Cry, or Per all show 
disrupted activity patterns and have deficits in 
memory formation (De Bundel et al., 2013; Jilg et al., 
2010; Kondratova et al., 2010; Oishi et al., 2006; Van 
der Zee et al., 2008; Wardlaw et al., 2014). It is impor-
tant to note that global knockdowns of core clock 
components typically impact the central circadian 
system as well as satellite clocks. Therefore, it is 
impossible to determine from these studies whether 
clock genes play a direct role in memory-relevant 
brain regions or whether their effects on memory are 
secondary to sleep-wake cycle disruptions (for 
review see Wright et  al., 2012). Recently, however, 
there have been several studies that have specifi-
cally tested the effects of site-specific manipulation 
of clock genes. For example, forebrain-specific Bmal1 
knockdown mice show impairments to both short-
term and long-term memory formation (Price et al., 
2016). Similarly, local manipulation of Per1 in the 
dorsal hippocampus (Kwapis et  al., 2018), ventro-
medial prefrontal cortex (Woodruff et al., 2018), or 
retrosplenial cortex (Brunswick et  al., 2023; Urban 
et  al., 2021) alters memory performance in mice. 
This work strongly suggests that clock genes func-
tion locally within memory-relevant brain regions to 
modulate memory in addition to their well-docu-
mented roles in the central circadian system.

Other Clock Modulators and Their Implications in 
Memory Formation

Beyond these 4 core clock components, there are 
many other accessory feedback loops that fine-tune 

Figure 1. Generalized diagram of transcription-translation 
feedback loop of the four core clock gene families. Expression of 
the molecular clock begins when the ClOCk-BMAl1 heterodi-
mer binds to E-box motifs in the Per and Cry promoters, driving 
their transcription. Once these proteins are translated in the cyto-
plasm, PER and CRy form a heterodimer that inhibits ClOCk-
BMAl activity to block subsequent Per/Cry transcription. 
Eventually, degradation of PER and CRy alleviates this ClOCk/
BMAl1 repression, restarting the cycle. In addition, REV-ERBα 
and RORα compete to bind retinoic acid–related orphan recep-
tor response elements (ROREs) upstream of Bmal1 to promote 
(arrowhead) and inhibit (flat head) Bmal1 transcription to fine-
tune the molecular clock. Created with BioRender.com.



4 JOURNAL OF BIOLOGICAL RHYTHMS / Month 202X

and regulate this cycle under different conditions 
and within different cell types (for review see 
Gallego and Virshup, 2007; Reddy and Rey, 2014; 
Reinke and Asher, 2019). Notably, in a key accessory 
feedback loop, the CLOCK-BMAL1 heterodimer can 
bind to E-box regions upstream of 2 nuclear orphan 
receptor genes, Rev-erbα and RORα. REV-ERBα and 
RORα proteins compete to bind to retinoic acid–
related orphan receptor response elements (ROREs) 
in the Bmal1 promoter to inhibit or enhance Bmal1 
transcription, respectively. This competition bet-
ween REV-ERBα and RORα can fine-tune Bmal1 
expression and therefore locally adjust the expres-
sion of the molecular clock and clock-controlled 
genes. Recent studies have revealed that REV-ERBα 
functions in the hippocampus to control neurogen-
esis (Schnell et al., 2014), excitatory long-term poten-
tiation (Choi et  al., 2018), and memory-relevant 
behaviors (Jager et  al., 2014), although no one has 
yet tested the effects of site-specific manipulation of 
REV-ERBα or RORα in memory.

Hormones such as melatonin and corticosterone 
have been shown to serve as an important link in the 
circadian control of memory formation (Chaudhury 
et  al., 2005; Dana and Martinez, 1984; Rawashdeh 
et al., 2007). Data from these studies suggest that cir-
culating hormones could operate as a zeitgeber, to 
convey time of day information in memory-relevant 
brain regions during memory formation. We predict 
that fluctuations in sex hormones, both those from 
circadian-induced changes and those from de novo 
synthesis may similarly be used to exert control of 
memory formation. More broadly, we hypothesize 
there is a bidirectional relationship between sex 
hormone action and clock gene expression that may 
exist within memory-relevant brain regions to syn-
ergistically modulate memory based on internal 
and external cues.

dEFINING SEx hORMONES ANd ThEIR 
MOdE OF ACTION IN ThE SCN

Circadian Control of Sex hormone Production

There are two main classes of steroid hormones. 
The first are steroid hormones involved in the stress 
response, such as corticosterone and aldosterone. The 
second, which will be the focus of this review, are sex 
hormones, which are classically defined as regulating 
reproductive functions. The three main types of sex 
steroid hormones are progestins, estrogens, and 
androgens. It is important to note that because of the 
close chemical relationship of these steroid hormones, 
many serve as precursors for the production of other 
steroid hormones. The structural similarity of these 

molecules has made researching their independent 
functions challenging. For example, progesterone is 
the precursor of most androgens and androgens are 
necessary precursors for the synthesis of estrogens, 
making it extremely difficult to know whether a 
given hormone influences a behavior or brain func-
tion directly or whether its primary function occurs 
indirectly via a downstream metabolite. Thus, it is 
important to consider any off-target or indirect effects 
that could be occurring when studying the action of a 
given sex hormone.

Progestins and estrogens were first described for 
their role in generating female-specific appearance, 
behaviors, and brain development and have been 
well-studied for their role in ensuring reproductive 
success. Similarly, androgens have been classically 
categorized for their essential role in male develop-
ment and reproduction. Interestingly, despite sex 
hormones having sex-specific roles in developmental 
and reproductive periods, the functions of sex hor-
mones within the brain are not always sex-specific. 
For example, estrogens are known to enhance mem-
ory formation in both male and female rodents, but 
there are prominent sex differences in the molecular 
and cellular mechanisms that underlie these hor-
monal actions (Jain et al., 2019; Koss et al., 2018).

Across the animal kingdom, the circadian system 
plays a critical role in regulating reproduction. In 
females, this influence is especially important, as 
cyclic changes in sex hormone levels throughout the 
body control sexual receptivity and activity at the 
physiological and behavioral levels (for review see 
Blaustein et al., 1994; McEwen et al., 1987). Extensive 
research in female rodents has characterized how 
time-of-day output from the SCN directly modulates 
the female reproductive system (for review see Miller 
et  al., 2014). Summarized briefly, gonadotropin-
releasing hormone (GnRH) is released from GnRH 
neuron terminals in the mediobasal hypothalamus. 
The release of GnRH induces a surge of luteinizing 
hormone (LH), coined the LH surge (for review see 
Tonsfeldt et  al., 2022), and follicle-stimulating hor-
mone (FSH), from the anterior pituitary into circula-
tion. In both males and females, the gonads 
dynamically respond to changing levels of LH and 
FSH by modulating rates of gametogenesis and sex 
steroid production across the day-night and repro-
ductive cycle. Sex steroid hormones, likewise, nega-
tively or positively feedback onto neurons in the 
hypothalamus to control LH and FSH release (for 
review see Wang and Moenter, 2020). Positive feed-
back is mediated by kisspeptin neurons in the rostral 
hypothalamus, whereas negative feedback is modu-
lated by both kisspeptin neurons in the caudal hypo-
thalamus and gonadotropin-inhibitory neurons 
(Angelopoulou et  al., 2021; Chassard et  al., 2015; 
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Gibson et al., 2008; Smith et al., 2005; Williams et al., 
2011). Interestingly, both of these feedback loops, pos-
itive and negative, receive input from the SCN (Vida 
et al., 2010), suggesting the clock is involved in regu-
lating sex hormone concentrations. Thus, there seems 
to be a bidirectional relationship between the circa-
dian system and sex hormone function. We predict 
that this relationship is not unique to the central circa-
dian pacemaker but is also present in memory-rele-
vant brain regions.

In female rodents, the LH surge is released from 
the anterior pituitary specifically during the late 
afternoon or early evening of proestrus (Legan and 
Karsch, 1975). Interestingly, rats treated chronically 
with estradiol will have an LH surge on multiple suc-
cessive days, but this surge is always restricted to the 
late afternoon, indicating that the circadian system 
controls reproductive timing on a stereotyped times-
cale (Legan and Karsch, 1975). Unsurprisingly, dele-
tions of core clock components can alter reproductive 
timing. For example, female mice with inhibited 
Bmal1 expression are deficient in both LH and FSH 
release during proestrus, as well as being infertile 
(Chu et al., 2013; Ratajczak et al., 2009). Within males, 
testosterone synthesis is known to fluctuate across 
the 24-h day, as LH release stimulates a peak of tes-
tosterone production in adult male rodents at 8:00 
a.m. and a trough of production between 7:00 p.m. 
and 9:00 p.m. (Lucas and Eleftheriou, 1980). 
Furthermore, Bmal1 knockout male mice have low 
testosterone levels, high LH levels, and are infertile, 
again showing the interconnectedness of the circa-
dian system and steroidogenesis.

Sex hormone Receptors in the SCN

Most commonly, the SCN is classified into two 
main subregions which are defined largely by the 
inputs they receive (van den Pol, 1980; van den Pol 
and Tsujimoto, 1985). The first subregion is the core, 
which receives the greatest density of retinal inputs 
(Lokshin et al., 2015), and is identified by its vasoac-
tive intestinal polypeptide- and gastrin-releasing 
peptide-containing neurons (Moore et al., 2002). The 
other is the shell, which sparsely receives retinal 
input and has a high density of arginine vasopres-
sin–expressing neurons (Abrahamson and Moore, 
2001). Androgen receptors have been identified in a 
variety of species including humans (Fernandez-
Guasti et al., 2000; Kruijver and Swaab, 2002). Within 
rodents, androgen receptors are localized to the core 
region of the SCN and are sensitive to light stimula-
tion (Karatsoreos et  al., 2007). Unlike androgen 
receptors, estrogen receptors are expressed in both 
the shell and core of the SCN, with one type of recep-
tor, estrogen receptor-β being expressed more 

frequently than estrogen receptor-α (for review see 
Hatcher et al., 2020; Yao and Silver, 2022). Progestin 
receptors are also present in the SCN, but very little 
has been characterized about their localization 
(Kruijver and Swaab, 2002).

It is important to recognize that most studies 
reporting sex differences come from more recent 
literature, since traditionally most neuroscience 
investigations have primarily focused on males. In 
fact, female subjects were included in less than 
20% of circadian studies before 2013 (Kuljis et al., 
2013). One exception in which sex differences have 
been clearly investigated is anatomical work mea-
suring the distribution of androgen and estrogen 
receptors within the SCN. Androgen receptors in 
the SCN are normally expressed at much higher 
levels in intact males than in intact females. 
Interestingly, androgen treatment in orchiecto-
mized (ORX) male or intact female mice increases 
androgen receptor concentration (Iwahana et  al., 
2008). In the human SCN, there are also sex differ-
ences in ovarian hormone receptors since estrogen 
receptor-α expression is higher among women, 
whereas there are no sex differences in the expres-
sion of estrogen receptor-β or progesterone recep-
tors (Kruijver and Swaab, 2002). Sex differences in 
receptor distribution may explain why several cir-
cadian genes are differentially expressed between 
males and females, such as the increased Bmal1 
expression observed in the central and medial 
amygdala in female rats compared to males 
(Chun et  al., 2015). Evidence from the studies 
above should encourage future research to inves-
tigate both the biological basis for sex differences 
in sex hormone receptor distribution and differ-
ences in the molecular response to receptor activa-
tion, which influ ences the maintenance of rhythmic 
clock gene expression.

EVIdENCE FOR SEx hORMONE CONTROl OF 
ThE CIRCAdIAN ClOCk

Traditionally, research on the intersection between 
sex hormones and the circadian cycle has focused on 
the implications for organismal development, sexual 
behavior, and reproduction. Much less is known about 
the influence that sex hormones have on circadian 
regulators or how these interactions might alter 
downstream functions like memory formation, 
despite numerous potential commonalities between 
these systems. At the molecular level, sex hormones 
interact with at least two circadian gene families, Per 
and Cry, within the SCN (Table 1). At the cellular level, 
sex hormones affect the SCN’s functioning similar to 
how they are known to act in memory-relevant brain 
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regions, for example, altering firing activity (Fatehi 
and Fatehi-Hassanabad, 2008) and synapse formation 
(Karatsoreos et al., 2011). The presence of sex hormone 
receptors within the SCN suggests that these pace-
maker neurons are directly modulated by sex hor-
mone signaling (Blattner and Mahoney, 2014, 2015; 
Iwahana et al., 2008; Karatsoreos et al., 2007). The fol-
lowing sections will highlight the current state of 
knowledge about the bidirectional interactions of 
clock gene expression and sex hormone action.

Androgenic Control of the Circadian Clock

The most common method for studying the role of 
androgens in males is the use of orchiectomy to 
remove the testes, the major sites of male androgen 
synthesis. Experimenters can then systemically or 
intracranially administer exogenous infusions of tes-
tosterone or dihydrotestosterone, a nonaromatizable 
form of testosterone (i.e. a form that cannot be con-
verted into estrogens). At the molecular level, reduc-
ing systemic concentrations of androgens through 
ORX in mice changes circadian clock gene oscillations 
in the SCN, reducing Per2 expression in the early 
night and increasing Per1 expression in the late night 
in response to a light pulse (Karatsoreos et al., 2011). 
Androgen receptor expression in the SCN of mam-
mals is sensitive to changing androgen levels in either 
sex, indicating that the central circadian pacemaker is 
acutely sensitive to fluctuations in androgen levels. 
Consistent with this idea, hypothalamic implants of 
testosterone in ORX male mice increase AR expres-
sion in the SCN and lengthen free-running activity 
rhythms (Model et al., 2015). Neuronal structure and 
activity are also modulated by androgens in the SCN. 

Orchiectomized male mice show increased glial fibril-
lary acid proteins and decreased synaptophysin 
expression, suggesting changes to both the structure 
and function of the SCN in response to the reduction 
of sex hormone production (Karatsoreos et al., 2011). 
Neuronal firing in the SCN of rodents is modulated 
by testosterone application, as assessed by electro-
physiological recordings on multiple hypothalamic 
nuclei (Jansen et al., 1993; Orsini, 1981). At the behav-
ioral level, the frequency of activity bouts in ORX 
male mice is dramatically reduced but can be restored 
with the addition of exogenous testosterone (Iwahana 
et  al., 2008; Morin and Cummings, 1981). Although 
the exact mechanisms of androgen action on the SCN 
are not known, the examples cited above suggest that 
manipulation of androgen concentrations can alter 
the circadian system at multiple levels.

Ovarian hormone Control of the Circadian Clock

The estrous cycle in rodents is defined by fluctua-
tions of estrogens and progestins across a roughly 4- 
to 5-day cycle, and these fluctuations drive direct 
changes in clock gene expression in the brain. Early 
evidence suggests a reciprocal interaction between 
ovarian hormones and the clock through observation 
of “scalloping” behavior. Scalloping was first 
described as rodents showing a phase advance in 
wheel running behavior during days of estrous, when 
estradiol levels are highest (Albers et al., 1981; Morin 
et al., 1977). Since activity phase is known to be driven 
by the SCN, where there is a documented presence of 
estrogen receptors in humans and rodents (Kruijver 
and Swaab, 2002; Vida et al., 2008), these studies sug-
gest that ovarian hormone signaling in the SCN can 

Table 1. Summary of sex hormone effects on clock genes expression in rodents.

Treatment Control Brain Region Clock Gene Effect Citation

ORX Intact M mice SCN Per1 Late night Per1 mRNA 
increase

Karatsoreos et al., 
2011

ORX Intact M mice SCN Per2 Early night Per2 mRNA 
decrease

Karatsoreos et al., 
2011

OVX + chronic 
subcutaneous E2 implant

OVX F rats with 
cholesterol vehicle

SCN Per2 Decreased peak of Per2 
mRNA

Nakamura et al., 
2005

OVX + subcutaneous E2 
injection

OVX F rats with 
sesame oil vehicle

SCN Cry2 Decreases Cry2 mRNA Nakamura et al., 
2001

OVX + subcutaneous E2 
injection

OVX F rats with 
sesame oil vehicle

Cortex Cry1 Increase Cry1 mRNA Nakamura et al., 
2001

GDX M and F Intact M rats SCN Per2 Decreased PER2 at ZT19 Perrin et al., 2006
None Intact F rats BNST and CEA Per2 Decreased PER2 during 

metestrus and diestrus
Perrin et al., 2006

None Intact M and F rats Amygdala Bmal1 Greater peak Bmal1 mRNA 
in F than M (ZT 8-20)

Chun et al., 2015

Abbreviations: ORX = orchiectomy; mRNA = messenger RNA; SCN = suprachiasmatic nucleus; OVX = ovariectomy; GDX = gonadectomy; 
M = male; F = female; E2 = 17-β-estradiol; ZT = Zeitgeber; BNST = bed nucleus of the stria terminalis; CEA = central nucleus of the amygdala.
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impact SCN function. More recent research has sug-
gested that clock gene expression is sensitive to 
estrous phase (Perrin et al., 2006), most likely due to 
changes in ovarian hormone concentrations. For 
example, daily Per2 expression in the bed nucleus of 
the stria terminalis and central nucleus of the amyg-
dala is blunted during metestrus and diestrus, sug-
gesting that ovarian hormones can modulate clock 
genes in brain structures outside the SCN (Perrin 
et al., 2006). Naturally occurring fluctuations in estro-
gens and progestins may therefore have region-spe-
cific impacts on clock gene expression outside the 
SCN, although the functional significance of these 
changes is not yet clear.

To study the effects of estrogen and progestin lev-
els on female physiology in a more controlled set-
ting, investigators use ovariectomized (OVX) females 
in which bilateral removal of the ovaries drastically 
reduces circulating levels of these hormones. Ovarian 
hormones, such as progesterone or the most potent 
form of estrogen, 17β-estradiol (E2), can then be 
administered systemically or intracranially to tem-
porally control their reintroduction to the system. 
Compared to androgenic action in the SCN, much 
less is known about the role progestins and estrogens 
have in changing circadian gene expression. Work in 
the field of environmental toxicology has shown that 
chronic progesterone treatment in male and female 
zebrafish can dramatically change expression of sev-
eral notable circadian genes, including members of 
the Per and Cry family within whole brain extracts 
(Zhao et al., 2015), suggesting there is a relationship 
between progesterone and clock gene expression 
within neural tissue. Furthermore, tissue explants 
from the SCN of female rats treated with progester-
one or a combination of progesterone and E2 had sig-
nificantly longer Per1 expression compared to 
explants from mice treated with just E2 or cyclo-β-
dextran, suggesting a specific role for progesterone 
in modulating clock gene expression (Murphy et al., 
2013). For estrogens, systemic injection of E2 leads to 
significantly lower Cry2 mRNA expression in the 
SCN of OVX rats (Nakamura et al., 2001). The same 
study found that Cry1 mRNA expression is increased 
in the cortex in response to E2 administration, sug-
gesting that estrogens can differentially alter clock 
gene expression in a site-specific manner (Nakamura 
et al., 2001). Likewise, chronic systemic E2 adminis-
tration in OVX rats significantly advances the peak 
of Per2 mRNA expression in the SCN (Nakamura 
et al., 2005). Subcutaneous E2 implants can increase 
both immediate early gene expression and cAMP 
response element–binding protein (CREB) phos-
phorylation in the SCN, implying that more than just 
circadian genes may be altered in response to estro-
gens (Abizaid et al., 2004). As we will review later, 

CREB is a notable molecular intersection between 
the circadian cycle and sex hormone signaling. 
Interestingly, CREB initiates Per1 transcription inde-
pendently of the canonical TTFL that induces Per1 
transcription via the E-box element (Travnickova-
Bendova et al., 2002). This secondary mechanism for 
transcriptional control of Per1 may enable it to func-
tion in roles outside of the circadian system, includ-
ing in long-term memory formation across a variety 
of memory-relevant brain regions (Bellfy et al., 2023; 
Jilg et al., 2010; Kwapis et al., 2018; Rawashdeh et al., 
2014; Urban et al., 2021; Woodruff et al., 2018). The 
SCN, as well as many of its direct afferent targets, 
expresses both estrogen and progestin receptors, 
indicating that ovarian hormones likely act through 
multiple brain regions to regulate circadian gene 
expression and circadian behavior. Neurotrans-
mission within the SCN is also impacted by estro-
gens, as bath application of E2 significantly increases 
the spontaneous firing frequency of neurons in the 
SCN of intact male rats (Fatehi and Fatehi-
Hassanabad, 2008). Thus, estrogenic signaling is reg-
ulated by circadian factors to support normal 
behavior in both female and male animals.

SEx hORMONES MOdulATE lEARNING  
ANd MEMORy

A considerable literature has amassed over the 
past four decades demonstrating the importance of 
sex hormones in regulating memory formation (for 
review see Garcia et al., 2018; Hsu et al., 2021; Spritzer 
et al., 2021; Taxier et al., 2020). Within memory-rele-
vant brain regions, sex hormones induce rapid bio-
chemical changes that influence cell-signaling 
cascades (for review see Frick et al., 2020), changes in 
gene expression (for review see Fortress and Frick, 
2014), neuron morphology (for review see Murakami 
et al., 2018), and neuronal excitability (for review see 
Ooishi et  al., 2012; Smith and Woolley, 2004). This 
review will focus on the role of sex hormones in 
memory consolidation, since this phase of memory is 
intricately linked to dynamic changes in gene expres-
sion, including the transcription of clock genes (Bellfy 
et  al., 2023; Guzowski et  al., 2000; Hall et  al., 2000; 
Linnarsson et al., 1997; Rawashdeh et al., 2014). The 
consolidation phase of memory is a common target 
for sex hormone manipulations because sex hor-
mones can be manipulated immediately after mem-
ory acquisition to affect consolidation without 
interfering with the learning event itself. In one of the 
first studies to test for rapid sex hormone action dur-
ing memory consolidation, a single post-training 
intraperitoneal injection of E2 into gonadally intact 
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male rats immediately after Morris water maze train-
ing drove enhanced spatial memory, as measured 
24 h later (Packard et al., 1996). Follow-up studies in 
OVX rats showed similar post-training spatial mem-
ory enhancements after systemic E2 injection or dor-
sal hippocampal E2 infusion (Packard and Teather, 
1997a, 1997b). Since these seminal studies, research-
ers have replicated E2’s ability to enhance memory 
consolidation among both sexes in the Morris water 
maze and a variety of other behavioral tasks such as 
context fear conditioning, object placement, and 
object recognition (Chen et al., 2014; Fernandez et al., 
2008; Frye and Walf, 2008; Gresack and Frick, 2006; 
Inagaki et al., 2010; Jacome et al., 2016; Luine et al., 
2003; Lynch et al., 2014; Vedder et al., 2013). Similarly, 
sex hormones have been shown to enhance memory 
in multiple memory-relevant brain regions, including 
the medial prefrontal cortex, amygdala, perirhinal 
cortex, and hippocampus (Fernandez et  al., 2008; 
Gervais et  al., 2013; Koss and Frick, 2019; Maeng 
et al., 2017; Tuscher et al., 2019). In contrast, the loss of 
sex hormones through gonadectomy or pharmaco-
logical manipulations has been linked to changes in 
neuron structure and function that typically restricts 
an animal’s ability to form memory (Aubele et  al., 
2008; Bredemann and McMahon, 2014; Koss and 
Frick, 2019; Zhao et  al., 2018; Zhou et  al., 2010). In 
general, sex hormone action within memory-relevant 
brain regions is known to impact several systems nec-
essary for memory formation ranging from genomic 
changes to neuron structure and activity (for review 
see Baudry et  al., 2013; Colciago et  al., 2015; Luine 
and Frankfurt, 2020).

General Sex hormone Presence in  
Memory-Relevant Brain Regions

As with the SCN, sex hormone receptors are com-
monly expressed in memory-relevant brain regions. 
The presence of these receptors has fueled much 
research into the genomic and nongenomic signaling 
that sex hormones can have in neurons, some of 
which will be reviewed below. As the presence and 
characterization of these receptors in memory-rele-
vant brain regions has already been thoroughly 
reviewed (Brinton et  al., 2008; Sarkey et  al., 2008; 
Torres-Reveron et al., 2020), here we will only briefly 
detail receptor expression in the rodent hippocam-
pus, a focal point for studying the intersection 
between memory formation and sex hormones. The 
hippocampus expresses receptors for all the major 
sex hormones: estrogens, progestins, and androgens. 
There are 3 types of estrogen receptors expressed in 
the hippocampus. The first 2 types of receptors, estro-
gen receptor-α and estrogen receptor-β, can be either 
nuclear or extranuclear (Milner et  al., 2001, 2005). 

When located on a neuron’s membrane, estrogen 
receptor-α and estrogen receptor-β commonly colo-
calize with G-protein-coupled receptors to modulate 
second messenger signaling (Boulware et  al., 2013; 
Hart et al., 2001), and ultimately memory formation. 
The third type of estrogen receptor is G-protein-
coupled estrogen receptor 1 (Brailoiu et  al., 2007), 
which has been linked to memory formation among 
other brain functions (for review see Hadjimarkou 
and Vasudevan, 2018). Progestin receptors are classi-
cally defined as ligand-activated transcription fac-
tors, which bind progesterone (or other ligands) and 
undergo confirmational changes that allow them to 
interact with progestin response elements on the pro-
moter of target genes (Edwards et al., 1991; Guerra-
Araiza et al., 2001). Some progestin receptor subtypes 
have nongenomic mechanisms, such as activation of 
second messenger signaling cascades (Nilsen and 
Diaz Brinton, 2003). Androgen receptors are also 
known to function inside or outside the nucleus (Kerr 
et al., 1995; Tabori et al., 2005). Interestingly, testoster-
one is not the only ligand to bind to and activate these 
receptors; many testosterone metabolites, such as 
dihydrotestosterone, actually have a higher binding 
affinity for these receptors than testosterone itself 
(Grino et al., 1990). Therefore, a diverse set of sex hor-
mone receptors are expressed within the hippocam-
pus, offering a range of possible interactions between 
sex hormones and memory formation.

Evidence for Sex hormone Action in  
Memory-Relevant Brain Regions

Numerous studies have demonstrated that sex 
hormone administration either systemically or 
directly infused via cannulation into memory-rele-
vant brain regions can enhance memory consolida-
tion in both male and female rodents (Babanejad 
et al., 2012; Fernandez et al., 2008; Koss et al., 2018; 
Orr et  al., 2012; Packard et  al., 1996; Tuscher et  al., 
2019). Although both sexes typically show overarch-
ing memory enhancements with sex hormone 
administration, many sex differences have been 
identified in the cellular and molecular mechanisms 
that support these memory improvements, includ-
ing male-female differences in receptor distribution, 
neuronal excitability, and spine density (for review 
see Bauer, 2023; Frick et  al., 2015). Sex, hormonal 
stage, and age-related differences in sex hormone 
receptor distributions could all contribute to changes 
in neuronal activity and therefore memory consoli-
dation, making this a complex process. For example, 
E2 potentiates hippocampal glutamatergic synaptic 
transmission via different estrogen receptor mecha-
nisms in ORX male and OVX female rats (Jain and 
Woolley, 2023; Oberlander and Woolley, 2017). Some 
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memory-relevant mechanisms induced by sex hor-
mones are identical in both sexes, like the changes in 
hippocampal spine density and dendritic structure 
observed following removal of circulating sex ste-
roid hormones in rats (Mendell et al., 2017). Female 
CA1 dendritic spines are so sensitive to changing 
ovarian hormones that spine density varies across 
the estrous cycle (Gould et al., 1990; Kato et al., 2013; 
Woolley et  al., 1990). Sex hormone effects on spine 
density are unique in that all 3 steroid hormones 
have been tested to see how their application affects 
neuron morphology. Progesterone, testosterone, and 
E2 all increase spine density in hippocampal neu-
rons, though there are some differences in sex of the 
model and cell type studied (Gould et  al., 1990; 
Hatanaka et al., 2015; Jacome et al., 2016; Kretz et al., 
2004). Follow-up studies found that E2 infused 
directly into the dorsal hippocampus increased spine 
density not only in the CA1 region but also in the 
medial prefrontal cortex (Tuscher et  al., 2016). 
Interestingly, inhibition of extracellular signal–regu-
lated kinase (ERK) phosphorylation and mammalian 
target of rapamycin (mTOR) activation is necessary 
for the E2-induced spinogenesis in either the dorsal 
hippocampus or medial prefrontal cortex, suggest-
ing that estrogens increase spine density via changes 
in transcription and translation in multiple memory-
relevant brain regions (Tuscher et al., 2016). There are 
many more examples of sex hormones inducing 
rapid changes to cell-signaling cascades, which we 
will discuss in the next section.

Induction of Cell-Signaling Cascades and 
downstream Gene Expression in Memory 
Consolidation

The most well-studied mechanisms underlying 
sex hormone regulation of memory consolidation 
involve rapid activation of dorsal hippocampus cell-
signaling cascades. As described previously, sex hor-
mones can impact circadian gene expression, so it is 
not surprising that sex hormones can alter memory-
relevant gene expression as well. Though androgen 
and progestin signaling can induce cell-signaling cas-
cades, E2 has been the most thoroughly investigated 
sex hormone in terms of sex hormone signaling dur-
ing memory consolidation. In both young and mid-
dle-aged female mice, estrogen-dependent memory 
consolidation for both object placement and object 
recognition tasks relies on rapid activation of cell-
signaling cascades, including the ERK signaling cas-
cade (Koss et  al., 2018; Tuscher et  al., 2016), 
phosphatidylinositol-3 (PI3K) (Fan et al., 2010), pro-
tein kinase A (PKA) (Lewis et al., 2008), and mTOR 
pathways (Fortress et al., 2013). Activation of ERK is 
a key regulatory point that can activate many 

downstream cell-signaling molecules. In the female 
hippocampus, phosphorylated ERK activates CREB, 
a transcription factor that is critical for both long-
term memory formation (Boulware et al., 2005) and 
clock gene expression (Frank and Greenberg, 1994; 
Lee et  al., 2010). Hippocampal CREB phosphoryla-
tion shows rhythmic diurnal oscillations, with peak 
activation occurring during the day (Rawashdeh 
et al., 2016), again implicating CREB’s activity being 
controlled by the circadian clock.

Interestingly, CREB activation can be regulated by 
either estrogens or androgens (Boulware et al., 2005; 
Nguyen et al., 2009), implying that it is a key regula-
tory mechanism for gene expression in either sex. 
Moreover, the memory-enhancing effects of E2 in 
ORX or gonadally intact male mice do not depend on 
ERK activation but may be associated with CREB 
phosphorylation and are mediated by androgen 
receptors (Koss and Frick, 2019). Therefore, the ulti-
mate activation of CREB offers a compelling potential 
interface between sex hormones, clock gene expres-
sion, and memory formation (Figure 2).

Sex hormones Regulate Chromatin-Modifying 
Enzymes

Another potential interface between sex hor-
mones, the biological clock, and memory are epigen-
etic mechanisms, factors that change gene expression 
by modulating chromatin structure rather than 
affecting the underlying DNA sequence itself. Most 
notably, histone acetylation, a major epigenetic 
mechanism important for memory consolidation 
(Barrett et al., 2011; Kwapis et al., 2017; McQuown 
et al., 2011; Stefanko et al., 2009), is both modulated 
by E2 and is downstream of the ERK signaling cas-
cade initiated during memory formation (Zhao 
et al., 2010). Estrogens depend upon ERK activation 
to increase histone acetyltransferase activity and 
decrease histone deacetylase (HDAC) activity dur-
ing memory consolidation (Fortress et  al., 2014; 
Zhao et  al., 2012). Sex hormones likely play a key 
role in regulating learning-induced transcription, as 
E2 infusions decrease the expression of repressive 
HDACs in the hippocampus and increase H3 acety-
lation at Bdnf, a memory-relevant gene (Fortress 
et al., 2014). Interestingly, clock genes may be regu-
lated by learning-induced changes in histone acety-
lation. One recent study found that learning 
increases histone acetylation at the promoter of the 
clock gene Per1 (Kwapis et  al., 2018), which coin-
cides with increased Per1 mRNA expression. 
Learning-induced changes in histone acetylation 
may therefore provide an interface between cell-sig-
naling cascades and downstream changes in clock 
gene expression, possibly serving as a mechanism 
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through which the circadian system can exert local 
diurnal control over the transcriptional program 
needed for long-term memory (Kwapis et al., 2018; 
Rawashdeh et  al., 2016). Thus, sex hormones can 
regulate chromatin modifying enzymes to modulate 
clock gene expression and ultimately memory for-
mation, serving as a second potential interface 
between the clock, hormones, and memory.

Role of Brain-derived Sex hormone Synthesis on 
Memory Formation

Beyond the systemic release of sex steroid hor-
mones, de novo brain-derived hormone production 
has been shown to be intricately linked to memory 
formation in both sexes. The enzyme aromatase con-
verts testosterone into estrogens within different 

tissue types, including memory-relevant parts of the 
brain (Hojo et  al., 2004; Prange-Kiel et  al., 2003). 
Several species including rodents, birds, and humans 
have all been found to have aromatase located in 
memory-relevant brain regions (Azcoitia et al., 2011; 
Bailey and Saldanha, 2015; Ivanova and Beyer, 2000), 
suggesting that rapid E2 synthesis may be important 
for memory formation. Since males and females pro-
duce estrogens at differing levels and on differing 
oscillatory cycles, unsurprisingly, sex differences 
have been found in the reliance of animals on sys-
temic versus de novo E2 synthesis. In female mice, E2 
levels fluctuate across the estrous cycle, yet remain 
detectable in the hippocampus after OVX, suggesting 
de novo E2 synthesis in this brain region (Kato et al., 
2013). This local estrogen synthesis is critical for 
memory (Kretz et al., 2004), though the mechanisms 

Figure 2. Proposed intersection between sex hormones and clock genes in memory-relevant brain areas. Intracellular processes are 
initiated by genomic and nongenomic action of steroid sex hormones (17β-estradiol [E2], progesterone [P4], or testosterone [T]). Non-
genomic signaling occurs through binding to corresponding G-protein-coupled receptors (GPCRs), metabotropic glutamate receptors 
(mGluRs), or ligand-gated ion channels. Activation of these receptors initiates sex-specific intracellular signaling cascades to induce 
cyclic AMP response element–binding protein (CREB) phosphorylation. Activated CREB can then drive transcription of memory-rel-
evant genes and clock genes. likewise, steroid sex hormone signaling can occur genomically when sex hormones bind to and activate 
intracellular hormone receptors, such as androgen receptors (AR), progestin receptors (PR), and estrogen receptors (ER). Activation of 
intracellular sex hormone receptors causes a confirmational change which allows them to be trafficked to the nucleus to modulate gene 
expression by binding to hormone response elements on dNA. We hypothesize that an increase of clock gene protein products in the 
cytoplasm then upregulates aromatase activity to induce the conversion of T to E2. dotted lines denote hypothetical pathways. Created 
with BioRender.com.



Boyd et al. / CIRCADIAN RHYTHMS, MEMORY, AND SEX HORMONES 11

which control aromatase activity and therefore de 
novo E2 synthesis rates remain poorly understood.

Inhibiting aromatase activity in the dorsal hippo-
campus impairs memory consolidation in object 
location memory, object recognition, and the Morris 
water maze in OVX and ORX mice (Koss and Frick, 
2019; Zhao et  al., 2018). Likewise, spine density 
(Kretz et al., 2004), synapse formation (Prange-Kiel 
and Rune, 2006), and long-term potentiation (Vierk 
et al., 2012) are all negatively impacted by aromatase 
inhibition. The extent to which males and females 
rely on gonadal versus brain-derived sources of sex 
hormones remains an active area of investigation, 
and it is currently unclear how local or global sex 
hormones interact with the clock. We predict that 
local synthesis is critically important and expect 
there is likely an interaction between clock gene 
expression and aromatase activity (Figure 2). Despite 
not fully understanding how aromatase activity is 
controlled, recent work suggests autocrine signaling 
is important in determining its activity level (Fester 
et al., 2016). Because both hormone levels and clock 
genes oscillate across stereotyped cycles, there could 
be a bidirectional relationship between these mecha-
nisms, part of which may include controlling aroma-
tase’s catalytic activity. We hypothesize that 
systemically circulating sex hormones induce 
genomic and nongenomic signaling following learn-
ing to activate transcription factors and chromatin-
modifying enzymes, which, in turn, increases clock 
gene expression in memory-relevant brain regions. 
Local increases in clock gene expression within 
memory-relevant brain regions could then drive the 
enzymatic activity of aromatase to influence de novo 
E2 synthesis, which could subsequently enhance 
memory formation in neuronal populations neces-
sary for memory storage.

INTERSECTION BETWEEN SEx hORMONES 
ANd CIRCAdIAN REGulATORS IN  

MEMORy-RElEVANT BRAIN REGIONS

Despite these clear links between sex hormones 
and the circadian clock, how clock-hormone inter-
actions might synergistically regulate local func-
tions like memory is currently unclear. Recent work 
has suggested that clock genes may modulate 
memory formation directly within memory-rele-
vant brain regions, suggesting that clock gene 
oscillations and their modulation via sex hormone 
action may play a key role in regulating memory. 
Notably, hippocampal memory is tightly controlled 
by the circadian system, with memory formation 
oscillating over the 24-h day/night cycle in both 
animal models and humans (Bellfy et  al., 2023; 

Chaudhury and Colwell, 2002; Eckel-Mahan et al., 
2008; Evans et al., 2017; Goode et al., 2022; Groeger 
et al., 2008; Harrison et al., 2007; Rawashdeh et al., 
2014). Furthermore, long-term memory requires 
expression of at least one of the core clock compo-
nents, Per1 (Rawashdeh et  al., 2016), and bidirec-
tional manipulation of Per1 in the hippocampus 
can modulate memory; local knockdown in young 
mice impairs spatial memory, whereas overexpres-
sion in old mice ameliorates age-related memory 
impairments (Kwapis et al., 2018). Thus, Per1 and 
other clock genes may locally function within 
memory-relevant brain regions to exert diurnal 
control over memory processes. Interestingly, the 
exact role of clock genes in this process may be sex-
specific, as Per1 overexpression in the retrosplenial 
cortex impairs context fear memory in males but 
has no effect in females (Urban et  al., 2021). This 
suggests there may be a critical interaction between 
circadian gene expression and sex hormone action 
during memory formation.

Perhaps the most convincing argument for a 
potential bidirectional relationship between clock 
genes and sex hormones comes from work at the 
molecular level, in which the transcription factor 
CREB interfaces with both Per1 (a core component 
of the molecular clock) and the signaling cascade 
necessary for estrogens’ enhancement of long-term 
memory (Figure 1). Known rhythmic phosphoryla-
tion patterns in CREB activity may be due to stereo-
typed fluctuations in sex hormone production, 
either over a 24-h cycle (e.g. testosterone in males) 
or over multiple days (e.g. the estrous cycle in 
females). Hormonal fluctuations could therefore 
change CREB activity, modulating memory consoli-
dation based on hormonal status (Figure 2). 
Likewise, clock genes may directly or indirectly 
influence the activity of aromatase to regulate a 
rhythmic or memory-relevant production of estro-
gens which, in turn, can feedback onto CREB phos-
phorylation. Although there is little evidence to 
document what mechanisms might control local 
aromatase activity, we hypothesize that clock genes, 
like Per1, may be involved in regulating de novo E2 
synthesis. This is plausible, as a bidirectional rela-
tionship between PER1 and CREB across the day/
night cycle has already been established (Rawashdeh 
et al., 2016). Thus, the circadian system can modu-
late the CREB-mediated transcriptional program 
necessary for both memory consolidation and local 
E2 synthesis.

It is likely that sex hormones and clock genes 
work in conjunction to control memory formation 
across many biological processes seasonally, 
throughout reproductive cycles, or in response to 
aging. Memory-relevant brain regions both express 
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sex hormone receptors and are known to rely on 
clock gene expression, enabling memory to be mod-
ulated by both time-of-day and hormonal informa-
tion. Although previous work has shown that sex 
hormones can regulate clock gene expression within 
the SCN and on circadian behavior (Table 1), it 
remains unclear whether this is also true in mem-
ory-relevant brain regions during memory forma-
tion. Current data suggest that hormones and clock 
genes each affect memory independently, yet it 
remains unclear how these processes work together 
to synergistically regulate memory formation. Our 
laboratories aim to expand upon the hypotheses 
presented here with the hopes of gaining valuable 
insight into the bidirectional relationship of clock 
gene expression and sex hormone action within 
memory-relevant brain regions.

CONCluSION

Active research into the sex hormone and circa-
dian interface is quite relevant to human health, as 
both systems contribute to multiple human diseases 
and disorders, such as Alzheimer’s (Fox et al., 2013), 
insomnia (Zhang et al., 2009), and infertility (Williams 
and Kriegsfeld, 2012). Disrupting either the circadian 
system or sex hormone release from the endocrine 
system can lead to impairments in memory and cog-
nition (Cho et al., 2000; Gibson et al., 2010; Gresack 
and Frick, 2006; Li et al., 2022; Loh et al., 2010) and 
biological sex plays an important role in the underly-
ing mechanisms that cause sleep disorders, of which 
women are more likely to be affected (Mallampalli 
and Carter, 2014). Similarly, acute or chronic shifts in 
estrogenic signaling due to pregnancy, menopause, 
or reproductive disorders are known to increase the 
likelihood of circadian rhythm disruption and 
impaired memory performance (Daniel, 2013; 
Mahoney, 2010; Shechter and Boivin, 2010; Sherwin 
and Henry, 2008). It is therefore critical to understand 
how these major modulatory systems interact to con-
trol memory formation in a synergistic and sex-spe-
cific manner.
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