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Following fear conditioning, behavior can be reduced by giving many CS-alone

presentations in a process known as extinction or by presenting a few CS-

alone presentations and interfering with subsequent memory reconsolidation.

While the two share procedural similarities, both the behavioral outcomes and

the neurobiological underpinnings are distinct. Here we review the neural and

behavioral mechanisms that produce these separate behavioral reductions, as

well as some factors that determine whether or not a retrieval-dependent

reconsolidation process or an extinction process will be in effect.
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Introduction

Almost a century has passed since Pavlov’s (1927) initial demonstration of extinction, a
phenomenon in which conditional responding declines when a conditional stimulus (CS)
is no longer presented with a biologically relevant unconditional stimulus (UCS). While
significant strides have been made in understanding the behavioral and neurobiological
mechanisms of Pavlovian extinction learning, it remains an active area of research due
to findings that demonstrate extinguished responding will readily return under a variety
of circumstances. These “relapse” effects (including spontaneous recovery, renewal, and
reinstatement) suggest behavioral changes produced by extinction are impermanent and CS-
UCS learning remains intact throughout extinction. While a variety of strategies have been
employed to reduce return of extinguished responding (Brooks and Bouton, 1993, 1994;
Vansteenwegen et al., 2006; Culver et al., 2011), behavioral relapse is the rule rather than
the exception (Bouton et al., 2021). This presents a significant hurdle to extinction-based
exposure therapies aiming to reduce maladaptive responding stemming from classically
conditioned experiences (Bouton et al., 2001; Hermans et al., 2006).

More recently, researchers have aimed to circumvent issues associated with extinction
by directly targeting the original CS-UCS memory, taking advantage of a brief period of
memory lability following retrieval known as reconsolidation. During this post-retrieval
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period, physical (Misanin et al., 1968) or pharmacological (Nader
et al., 2000) assaults can fundamentally change the memory.
Reconsolidation is thought to alter or ablate the original
memory trace itself, particularly within regions like the amygdala,
hippocampus, and prefrontal cortex. As such, memory that has
been reduced through reconsolidation is not susceptible to relapse.

However, there are procedural similarities between retrieval-
induced reconsolidation and extinction: both involve some amount
of exposure to unreinforced conditional stimuli. A key difference
between the two is that reconsolidation typically involves limited or
brief exposure to a CS whereas extinction involves more extensive
exposure to the CS. Further, much of the mechanistic work has
suggested that extinction-related and reconsolidation-related fear
inhibition depend differentially on amygdala interactions with the
hippocampus and prefrontal cortex.

Understanding the conditions that produce extinction or
reconsolidation-like effects will aid the development of therapeutic
strategies that aim to take advantage of reconsolidation to limit
behavioral relapse associated with extinction learning. Here, we
review the literature underlying the boundaries between what
variables produce retrieval-induced reconsolidation and which
variables result in the creation of a new memory via extinction.
We will discuss both the behavioral and neural mechanisms (see
Table 1), with a primary focus on basolateral amygdala (BLA),
dorsal hippocampal (DH), and infralimbic prefrontal cortical
(IL) contributions.

Fear memory formation

Fear memories are formed through CS-UCS pairings, resulting
in an association between the two supported by an amygdala-
centric neural circuit (Helmstetter et al., 2008). Following fear
conditioning, memory strength can be indicated by the amount
of fear responding. While several brain regions are critical for fear
processes, medial prefrontal cortical, DH, and BLA subregions are
especially critical for memory formation and retention (Kwapis
et al., 2011; Gilmartin et al., 2012; Likhtik et al., 2014; Zelikowsky
et al., 2014). The interaction between these regions governs the
amount of fear and subsequent memory strength, precision, and
the ability to later modify memory.

Fear memory is supported by changes in synaptic strength and
plasticity in the BLA, characterized by AMPA receptor synaptic
presence and NMDA-dependent long-term potentiation (Clugnet
and LeDoux, 1990; Maren and Fanselow, 1995; Rogan and LeDoux,
1995; Humeau et al., 2007). Synaptic potentiation is supported
by several intracellular processes that contribute to changes in
gene expression and the synthesis of new proteins, including
MAPK and PKA cellular signaling, epigenetic modifications,
and subsequent changes in gene expression. These together
support persistent changes needed for long-term memory storage.
Fear memory formation can be disrupted by BLA inactivation
with inhibitory GABAergic manipulations (Helmstetter and
Bellgowan, 1994; Gilmartin et al., 2012), interference with cellular
signaling cascades (Schafe and LeDoux, 2000; Schafe et al.,
2000; Parsons et al., 2006), blockade of epigenetic modifiers
(Monsey et al., 2011; Maddox et al., 2013a,b), or disruptions
in glutamatergic receptor trafficking (Joels and Lamprecht, 2010;
Migues et al., 2010).

TABLE 1 Brief overview summarizing similarities and differences
between extinction and reconsolidation.

Finding Extinction Reconsolidation

Susceptible to spontaneous
recovery

Yes No

Susceptible to renewal Yes No

Susceptible to
reinstatement

Yes No

Observed after many trials Yes No

Observed after few trials No Yes

Need prediction error Yes Yes

Produces changes in
synaptic GluA2 in BLA

No Yes

Requires protein synthesis Yes Yes

While these represent the most commonly observed findings, some exceptions exist; see text
for details.

Extinction learning and inhibitory
memory creation

Following memory formation, behavior can be reduced
through extinction, where a CS or context that was previously
predictive of a UCS is presented alone. While retrieval-based
reconsolidation is observed after relatively few CS-alone
presentations, extinction is observed following many CS-alone
presentations. Extinction results in the formation of a new,
context-dependent CS-No UCS memory (Bouton and Bolles, 1979;
Trask et al., 2017).

Extinction is dependent on BLA inhibitory GABAergic
neuronal activity (Akirav et al., 2006; Sangha et al., 2009; Heldt
et al., 2012). Synaptic plasticity within the BLA is governed by
NMDA receptor activity, which triggers cellular and synaptic
changes needed to support long-term memory. Because extinction
learning represents a new form of learning, it requires many
of the same modifications as initial memory formation (Walker
et al., 2002; Zimmerman and Maren, 2010). While these effects
are often thought to occur on glutamatergic neurons, GABAergic
populations also contain NMDA receptors and GABAergic
neuronal activity is mediated by NMDA receptors (Royer and Pare,
2002; Szinyei et al., 2003; Polepalli et al., 2010; Spampanato et al.,
2011). Thus, NMDA receptor effects may result from GABAergic
regulation.

The increase in GABAergic tone within the BLA decreases
the activity of excitatory neurons needed for fear expression.
Extinction learning is dependent on IL projections to the
BLA; direct IL inputs to the BLA engage GABAergic neurons
that suppress principal excitatory neurons (Selleck et al., 2018;
Bukalo et al., 2021). Extinction increases the excitability of BLA-
projecting IL neurons to increase the capacity of the IL to
suppress BLA activity (Bloodgood et al., 2018; Ferrara et al.,
2020). Inhibiting IL activity during extinction learning impairs
its acquisition (Sierra-Mercado et al., 2011; Do-Monte et al.,
2015) and epigenetic manipulations within the IL modify the
strength and persistence of extinction memories (Lattal et al.,
2007; Marek et al., 2011; Bahari-Javan et al., 2012; Stafford
et al., 2012; Kwapis and Wood, 2014), suggesting plasticity in
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this region is critical for extinction. Similarly, manipulations
that directly suppress BLA excitation enhance extinction. This
includes both manipulations that activate GABAergic inputs from
the mPFC, and those that inhibit excitatory inputs to the BLA
from the auditory thalamus and cortex (Cho et al., 2013; Ferrara
et al., 2020). In this manner, extinction memories are thought
to recruit BLA inhibition to suppress the original, excitatory
fear memory. However, several results have demonstrated that
IL activity is not necessary for the expression of extinguished
behavior (Do-Monte et al., 2015), which instead depends on
the ventral hippocampus (Sierra-Mercado et al., 2011), likely
through projections inhibiting the prelimbic cortex (Vasquez et al.,
2019).

Extinguished fear renews when tested outside of the extinction
context or after a sufficient amount of time (Bouton et al., 2006).
The DH is important for encoding contextual attributes of a
memory, and DH lesions prevent context-dependent return
of fear after extinction (Corcoran and Maren, 2004; Ji and
Maren, 2005; Helmstetter et al., 2008; Gafford et al., 2011).
However, DH-dependency is based on the context in which
renewal occurs, as DH regulates renewal in novel contexts
but not the training context (Corcoran and Maren, 2004).
Impaired extinction is believed to be a result of increased
BLA-DH synchronization when GABAergic processes are
disrupted (Sangha et al., 2009). Importantly, changes at inputs
supporting initial fear memory storage remain unchanged after
fear extinction, suggesting that the return of fear following
extinction is a result of a persisting neural trace (Kim and Cho,
2017).

Together, this suggests extinction memory is characterized
by increases in GABAergic tone, dependent on IL-BLA
pathway, and persisting/relapsed fear is supported by DH-BLA
interaction. Activity among these regions drives fear expression
following extinction.

Retrieval-induced memory lability
and reconsolidation

Following retrieval, memory becomes temporarily sensitive
to disruption and must be stored again in a process called
reconsolidation. In an initial demonstration, following CS retrieval,
rats were given electroconvulsive shock and substantially decreased
their CS-elicited fear relative to controls that did not receive
electroconvulsive shock (Misanin et al., 1968). Other types of
amnesic events following retrieval, like hypothermia, have similar
deleterious effects on memory (Mactutus et al., 1979). Interest
in this topic renewed following work that demonstrated protein
synthesis blockade with BLA anisomycin infusions immediately
after cued fear retrieval impaired later CS memory (Nader et al.,
2000) and conditions that create this effect began to be explored.

Early experiments compared how post-retrieval and extinction
injections of anisomycin affected behavior. BLA protein synthesis
inhibition following either retrieval or extinction resulted in
impaired reconsolidation, consistent with a weaker fear memory
(Duvarci et al., 2006). One likely explanation for this finding
is that extinction and reconsolidation rely on non-overlapping
circuitry, with extinction processes being dependent on input from
the infralimbic cortex (e.g., Do-Monte et al., 2015). Interestingly,

post-retrieval anisomycin prevented both spontaneous recovery
and reinstatement, suggesting that retrieval-based manipulations
may affect the original memory itself (Duvarci and Nader, 2004).
The efficacy of anisomycin inhibition in the BLA is contingent on
brief decreases in AMPA receptor-mediated synaptic transmission.
Memory retrieval is characterized by persistent increases in
AMPA- relative to NMDA-mediated currents, with transient
changes in the contribution of calcium-impermeable and calcium-
permeable AMPA receptors (Hong et al., 2013). While calcium-
impermeable AMPA receptors are present in BLA synapses,
these AMPA receptors internalize and are replaced with calcium-
permeable AMPA receptors (Hong et al., 2013). This exchange
is believed to mediate intracellular plastic changes required for
memory lability, as this AMPA receptor trafficking occurs along
the same timeframe that anisomycin impairs memory retention
and interferes with anisomycin memory impairments when this
transient internalization of calcium impermeable AMPA receptors
is inhibited (Hong et al., 2013). This work identified the importance
of AMPA receptor trafficking, and specifically calcium influx for
protein synthesis-dependent memory lability required for memory
modification.

A number of changes occur within the BLA during fear
memory reconsolidation, including intracellular signaling
cascades, epigenetic modifications, and changes in gene expression
(Johansen et al., 2011; Kwapis and Wood, 2014). One particularly
important intracellular change that occurs in the BLA is altered
protein degradation, critical for memory destabilization (Jarome
et al., 2011, 2013, 2016). Transient internalization of calcium-
impermeable AMPA receptors allows for postsynaptic calcium
influx, and this regulates protein degradation-related activity
(Ferrara et al., 2019a). Some of the proteins targeted for
degradation include synaptic scaffolds and factors mediating
protein synthesis, suggesting the proteasome system plays an
important role in the reorganization of synaptic structure following
memory retrieval and in the regulation of anisomycin-related
memory impairments (Jarome et al., 2011). Interestingly, these
processes are regulated by CaMKII activity, which is initiated by
calcium influx (Jarome et al., 2013, 2016). Inhibition of any of
these factors prevents protein synthesis and subsequent effects
of anisomycin. Cellular mechanisms downstream from AMPA
receptor trafficking therefore play a pivotal role in preservation of
fear memory.

The necessity of protein synthesis was also extended to
hippocampus-dependent context fear memories, where local DH
anisomycin infusions reduced fear (Debiec et al., 2002). In a delay
fear conditioning task new contextual information introduced
during memory retrieval is sufficient to drive reconsolidation
processes and the absence of new contextual information leaves
memory resistant to disruption (Jarome et al., 2015). Synaptic
activity in the BLA following memory retrieval in a new context
is mediated by DH activity; inhibition of DH activity reduces
the necessity of contextual novelty for reconsolidation-induced
changes in behavior and calcium-impermeable GluA2-containing
AMPA receptor trafficking within the synapse (Ferrara et al.,
2019b). Together, these results suggest that the DH and BLA
are critical sites for fear memory storage and can influence
reconsolidation-like processes.

Some work has demonstrated that prediction error is necessary
to induce reconsolidation-like effects (Sevenster et al., 2014), in line
with findings suggesting new information must be included in to
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induce memory lability during retrieval (see Exton-McGuinness
et al., 2015, for a review). However, prediction error may not be
the only factor driving memory lability accompanied by a brief
retrieval. This has been clearly seen when a CS-UCS retrieval
presentation (i.e., no prediction error is likely as the CS is paired
with what is predicted from initial learning) still leaves a memory
susceptible to disruption with a post-retrieval anisomycin injection
(Duvarci and Nader, 2004). Interestingly, this is only the case
in situations in which the memory is not well-learned, suggesting
the ability for protein synthesis inhibition to impair a memory
without the introduction of prediction error may instead be
reflective of impaired consolidation that accompanies new learning
rather than impaired reconsolidation indicative of retrieval of a
well-learned memory.

New information integrated during memory retrieval and
mediated by reconsolidation can also change the neural circuitry
that supports memory, suggesting that reorganization happens
more broadly than at the synapse. Memory updating with a single
trial of delay conditioning following initial trace fear conditioning,
which is dependent on cortical structures, resulted in responding
that was no longer dependent on cortex for expression (Kwapis
et al., 2017). This suggests that new information integrated during
the single-trial updating session can not only change behavior but
also can change the neural circuit that supports fear memory. The
reorganized circuit supporting updated memory is less complex
than the circuit that supported the original memory, which might
be easier to target therapeutically.

Some work challenges the notion that interfering with
reconsolidation in the post-retrieval period impacts the original
memory. For example, anisomycin injections following context
fear retrieval impaired fear expression the next day but had no
impact when testing occurred 21 days later (Lattal and Abel,
2004), in line with early results reporting that reactivated
memory impaired by hypothermia-induced amnesia was
susceptible to spontaneous recovery but new memory was
not (Mactutus et al., 1979). Further, protein synthesis inhibition
following fear acquisition has a larger, more persistent effect
on behavior than following memory retrieval (Stafford and
Lattal, 2009), suggesting that a reactivated memory is not as
susceptible to disruption as was originally assumed. These results
complement early work on reconsolidation-like effects, in which
a second exposure to an amnesic event would rescue memory
impairments observed following the first exposure (Hinderliter
et al., 1975).

Interactions between
reconsolidation and extinction

Some work has combined retrieval with extinction to enhance
extinction learning. For example, Monfils et al. (2009) found that
a brief retrieval to open the reconsolidation window followed by
an extended extinction session resulted in more effective extinction
and reduced behavioral relapse. This suggests reactivation makes
the original memory susceptible to disruption and under these
conditions, extinction can act on the original memory instead of
creating a new memory. This was supported by work showing
this effect was dependent on changes in calcium-permeable AMPA

receptors in the BLA, while regular extinction was not (Clem and
Huganir, 2010). This reactivation-extinction method is especially
attractive as a therapeutic target because it is readily applicable
to and effective in humans and does not require pharmacological
manipulations (Schiller et al., 2010). However, failures to replicate
in both humans (Chalkia et al., 2020a) and rats (Luyten and
Beckers, 2017) or to verify the Schiller et al. (2010) report (Chalkia
et al., 2020b) have caused scrutiny on the generality of these
effects.

Additional work has found that unpaired presentations of the
UCS during extinction can reduce both fear renewal and rapid
reacquisition (Lipp et al., 2021), suggesting that UCS exposures
during extinction might engage different processes than CS-alone
presentations and capitalize on reconsolidation-like mechanisms
(see also Siegel et al., 2022).

The tipping point: When does
retrieval become extinction?

In auditory fear conditioning, a few unreinforced CS
presentations following conditioning will result in memory
lability (reconsolidation), but many unreinforced CS presentations
will result in new inhibitory learning (extinction). Presenting
few (4) CSs will engage reconsolidation-like processes (indicated
by internalization of GluA2-containing AMPA receptors) but
presenting many (40) CSs will result in extinction learning
(indicated by decreased CREB phosphorylation). However,
inhibiting excitatory thalamic projections in the BLA during a
brief retrieval can shift both the behavioral and molecular profile
to that of extinction, driving decreased CREB phosphorylation
and context-dependent reduction in fear susceptible to fear
renewal (Ferrara et al., 2021). It has also been suggested that
while prediction error is needed to drive memory reconsolidation
(Sevenster et al., 2014), too much prediction error or dissimilarity
between memory acquisition and retrieval might instead drive
new memory formation like that observed in extinction learning
(Sevenster et al., 2013). The specific behavioral protocol that
is used may ultimately determine whether reconsolidation or
extinction is triggered, depending on whether mPFC inputs to
the BLA (and subsequent activation of BLA GABAergic circuitry)
is recruited. In this circumstance, brief retrieval sessions engage
excitatory BLA processes that are initiated with AMPA receptor
trafficking. As the retrieval session is extended, this increasingly
recruits the mPFC→BLA pathway increasing BLA GABAergic
tone.

Like retrieval and extinction procedures, presenting few or
many weak shocks following fear conditioning can differentially
impact behavior. While 2 weak shocks following contextual fear
conditioning can increase fear elicited by that context, 10 weak
shocks decreases contextual fear (Ferrara et al., 2019a). Follow-up
work comparing this procedure to extinction found that, unlike
extinction, the effects of weak shock transcend context and rely
on long-term changes at BLA synapses (Bonanno et al., 2023).
However, as with standard retrieval and extinction protocols, the
specific conditions that increase freezing behavior (Ferrara et al.,
2019a) or weaken freezing behavior (Bonanno et al., 2023), are
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not yet known; it is unclear how many weak shocks are needed
to tip memory from strengthening to weakening. However, fear
following weak shock exposures decreases with amount of weak
UCS presentations, as reduced-intensity UCS presentations did not
need to occur within a single session but could occur over several
days (Popik et al., 2020). While it seems to function similarly
to CS-alone presentations, work needs to identify any boundary
conditions that may exist for this procedure.

Conclusion

While systematic work directly comparing retrieval-dependent
reconsolidation to extinction is still sparse, it seems that number of
CS presentations is the crucial variable that drives the behavioral
and neurobiological differences between reconsolidation and
extinction. Other factors, however, may contribute substantially
to these effects. This includes introducing new information (e.g.,
contextual novelty) and optimizing prediction error, which may
contribute to the likelihood that reconsolidation-like processes are
preferentially engaged.
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